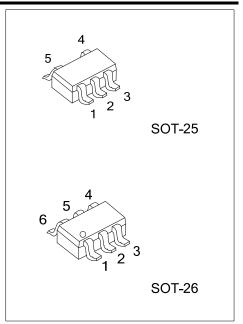
L1183A Preliminary CMOS IC

300mA CMOS LDO

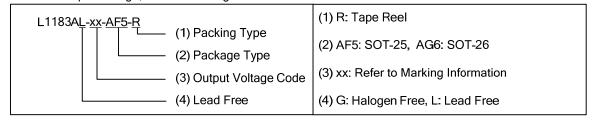

■ DESCRIPTION

The UTC **L1183A** is a COMS positive linear regulator. One of it's feature is the very low quiescent current typical as low as $30\mu A$ and its dropout voltage is extremely low with 300mA output current.

The internal circuit includes thermal shutdown and current fold-back to prevent device failure when the circuit is operated in the bad conditions.

In application, the UTC **L1183A** needs a low noise, regulated supply. For stable operation, the output capacitance value should be $2.2\mu F$ or more.

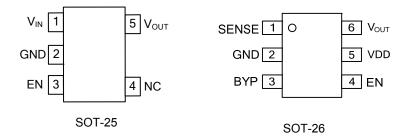
The UTC **L1183A** is an ideal for battery applications, such as instrumentations, portable electronics, wireless devices, cordless phones, PC peripherals, and battery powered widgets.


■ FEATURES

- * Accurate To Within 1.5%
- * Quiescent Current: 30µA
- * Internal Over-Temperature Shutdown
- * With Current Limiting
- * Internal Short Circuit Current Fold-Back
- * Has Power-Saving Shutdown Mode
- * Very Low Temperature Coefficient

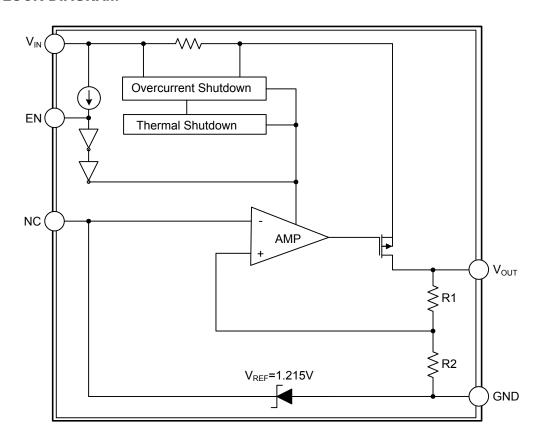
■ ORDERING INFORMATION

Ordering Number		Dookogo	Packing	
Lead Free Halogen Free		Package		
L1183AL-xx-AF5-R	_1183AL-xx-AF5-R L1183AG-xx-AF5-R		Tape Reel	
L1183AL-xx-AG6-R	L1183AG-xx-AG6-R	SOT-26	Tape Reel	


Note: xx: Output Voltage, refer to Marking Information.

MARKING INFORMATION

PACKAGE	VOLTAGE CODE	MARKING			
SOT-25	15 :1.5V 28 :2.8V	Voltage Code SXXA G: Halogen Free L: Lead Free			
SOT-26	31 :3.1V 33 :3.3V	Voltage Code SXXA G: Halogen Free L: Lead Free			


■ PIN CONFIGURATION

■ PIN DESCRIPTION

PACKAGE	PIN NO.	PIN NAME	DESCRIPTION			
	1	V _{IN}	Input for voltage input. A $1\mu F$ or greater capacitor should be placed in this pin.			
	2	GND	Ground.			
SOP-25	3	EN	Enable pin. Pulling his pin low, can shut down the PMOS pass transistor, and the current consuming can be set less than 1µA.			
	4	NC				
	5	V _{OUT}	Output voltage pin. The capacitor which connected between this pin and GND should be decoupled with a 1µF or a greater value low ESR ceramic capacitor.			
	1	SENSE	Remote Sense.			
	2	GND	Ground.			
3		BYP	Bypass capacitor for noise reduction.			
SOP-26	4	EN	Enable Input.			
	5	V_{DD}	Supply Input.			
	6	V_{OUT}	Output Voltage.			

■ BLOCK DIAGRAM

■ ABSOLUTE MAXIMUM RATING(Unless otherwise specified)

PARAMETER	SYMBOL	RATINGS	UNIT
Input Voltage	V _{IN}	-0.3~ +8	V
Input Voltage (EN,BYP)		-0.3~ +8	V
Output Voltage	V _{OUT}	-0.3~ V _{IN} +0.3	V
Output Voltage	I _{OUT}	P _D / (V _{IN} - V _{OUT})	mA
Power Dissipation	P _D	400	mW
Junction Temperature	TJ	150	°C
Storage Temperature	T _{STG}	-65 ~ +150	°C

Note: Absolute maximum ratings are those values beyond which the device could be permanently damaged. Absolute maximum ratings are stress ratings only and functional device operation is not implied.

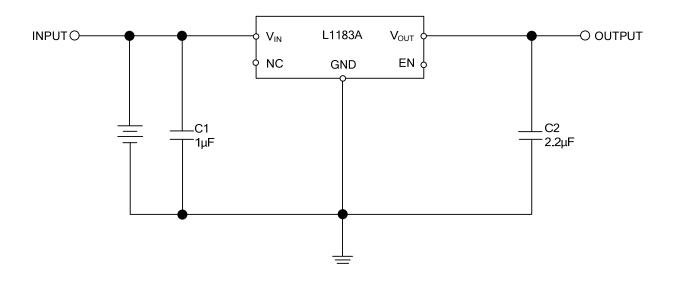
■ RECOMMENDED OPERATING CONDITIONS

PARAMETER	SYMBOL	RATINGS	UNIT
Ambient Temperature	T _A	- 40 ~ +85	°C
Junction Temperature	TJ	+125	°C
Storage Temperature	T _{STG}	-65 ~ +125	°C

■ THERMAL DATA

PARAMETER	SYMBOL	RATINGS	UNIT
Junction to Ambient	θ_{JA}	280	°C/W
Junction to Case (Note)	θ _{JC}	140	°C/W

Note: θ_{JC} on center of molding compound if IC has on tab


■ **ELECTRICAL CHARACTERISTICS** (T_A = 25°C, Unless otherwise specified)

PARAMETER	SYMBOL	TEST CONDITIONS		MIN	TYP	MAX	UNIT
Input Voltage	V _{IN}			Note1		6.5	V
Line Regulation	ΔVout Vout	V -V 14 V 12	1.2V≤V _{OUT} ≤1.4V	-0.2		0.2	%
		$V_{IN}=V_{OUT}+1\sim V_{OUT}+2$	1.4V <v<sub>OUT≤2.0V</v<sub>	-0.15		0.15	%
		I _{OUT} =1mA	2.0V <v<sub>OUT<4.0V</v<sub>	-0.1	0.02	0.1	%
Load Regulation	$\frac{\Delta V_{OUT}}{V_{OUT}}$	I _{OUT} =1mA~300mA		-1	0.2	1	%
Output Voltage Assurage		I _{OUT} =1mA		-1.5		1.5	%
Output Voltage Accuracy		I _{OUT} =300mA		-2.5		2.5	%
Quiescent Current	IQ	I _{OUT} =0mA			30	50	μΑ
		I _{ОПТ} =300mA	1.2V≤V _{O(NOM)} ≤2.0V			1300	mV
Dropout Voltage	V_D	001	2.4V <v<sub>O(NOM)≤2.8V</v<sub>			400	
		$V_{OUT}=V_{O(NOM)}-2.0\%$	2.8V <v<sub>O(NOM)<3.8V</v<sub>			300	
		1 -100mA	f=100Hz		60		dB
Power Supply Ripple Rejection	PSRR	I _{OUT} =100mA C _{OUT} =2.2μF	f=1kHz		50		dB
			f=10kHz		20		dB
Output Voltage Noise	eN	I _{OUT} =10mA,C _{OUT} =2.	2μF,f=10Hz~100kHz		30		μV_{RMS}
Output Current	I _{OUT}	V _{OUT} >1.2V		300			mA
Current Limit	I _{LIMIT}	V _{OUT} >1.2V		300	450		mA
Short Circuit Current (Note2)	I _{SC}	V _{OUT} <0.8V			150	300	mA
Ground Pin Current	I_{GND}	I _{OUT} =1mA ~300mA			35		μΑ
Over Temperature Shutdown	OTS				150		°C
Over Temperature Hysteresis	OTH				30		°C
Temperature Coefficient of Output Voltage	T_CV_O				30		ppm/°C
ENIT OF THE OFFICE OF THE OFFI	V_{EH}	V _{IN} =2.7V~6.5V		2.0		V_{IN}	V
EN Input Threshold	V _{EL}	V _{IN} =2.7V~6.5V		0		0.4	V
EN Input Bias Current	I _{EH}	V _{EN} =V _{IN} , V _{IN} =2.7V~6.5V				0.1	μΑ
	I _{EL}	V _{EN} =0V, V _{IN} =2.7V~6	5.5V			0.5	μA
Shutdown Supply Current	I _{SD}	V _{IN} =5V, V _O =0V, V _{EN} <v<sub>EL</v<sub>			0.5	1	μA
Shutdown Output Voltage	V_{SD}	I _O =0.4mA, V _{EN} <v<sub>EL</v<sub>				0.4	V

Notes:1. $V_{IN(MIN)} = V_{OUT} + V_{D}$

^{2.} To prevent the short circuit current protection feature from being prematurely activated, the input voltage must be applied before a current source load is applied.

■ TYPICAL APPLICATION CIRCUIT

UTC assumes no responsibility for equipment failures that result from using products at values that exceed, even momentarily, rated values (such as maximum ratings, operating condition ranges, or other parameters) listed in products specifications of any and all UTC products described or contained herein. UTC products are not designed for use in life support appliances, devices or systems where malfunction of these products can be reasonably expected to result in personal injury. Reproduction in whole or in part is prohibited without the prior written consent of the copyright owner. The information presented in this document does not form part of any quotation or contract, is believed to be accurate and reliable and may be changed without notice.